AIbase
Home
AI Tools
AI Models
MCP
AI NEWS
EN
Model Selection
Tags
Pixel-level Annotation

# Pixel-level Annotation

Test2
Apache-2.0
FoodSeg103 is a dataset containing 7,118 food images, annotated with 104 ingredient categories, with an average of 6 ingredient labels and pixel-level masks per image.
Image Segmentation Transformers
T
mccaly
22
1
Segformer B0 Person Segmentation
Openrail
A semantic segmentation model based on the Segformer architecture, used to assign semantic category labels to each pixel in an image.
Image Segmentation Transformers English
S
s3nh
3,187
2
Upernet Swin Base
MIT
UperNet is a framework for semantic segmentation that uses Swin Transformer as the backbone network, enabling efficient pixel-level semantic annotation.
Image Segmentation Transformers English
U
openmmlab
700
2
Upernet Convnext Xlarge
MIT
UperNet is a framework for semantic segmentation, utilizing ConvNeXt as the backbone network, capable of predicting semantic labels for each pixel.
Image Segmentation Transformers English
U
openmmlab
659
2
Upernet Convnext Base
MIT
UperNet is a framework for semantic segmentation that uses ConvNeXt as the backbone network and can predict semantic labels for each pixel.
Image Segmentation Transformers English
U
openmmlab
178
1
Featured Recommended AI Models
AIbase
Empowering the Future, Your AI Solution Knowledge Base
English简体中文繁體中文にほんご
© 2025AIbase